

IEC 62439-1

Edition 1.0 2010-02

INTERNATIONAL STANDARD

Industrial communication networks – High availability automation networks – Part 1: General concepts and calculation methods

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XA

ICS 25.040, 35.040 ISBN 978-2-88910-704-9

CONTENTS

FO	REW	ORD		5	
IN	rod	UCTION	N	7	
1	Scop	e		8	
2	Norn	native re	eferences	8	
3	Terms, definitions, abbreviations, acronyms, and conventions				
	3.1	·			
	3.2				
	3.3		entions		
		3.3.1	General conventions		
		3.3.2	Conventions for state machine definitions		
		3.3.3	Conventions for PDU specification	17	
	3.4	Reser	ved network addresses	18	
4	Conformance requirements (normative)				
	4.1	Confo	rmance to redundancy protocols	18	
	4.2		rmance tests		
		4.2.1	Concept	19	
		4.2.2	Methodology	19	
		4.2.3	Test conditions and test cases	20	
		4.2.4	Test procedure and measuring	20	
		4.2.5	Test report	20	
5	Cond	cepts fo	r high availability automation networks (informative)	21	
	5.1 Characteristics of application of automation networks				
		5.1.1	Resilience in case of failure	21	
		5.1.2	Classes of network redundancy	22	
		5.1.3	Redundancy maintenance		
		5.1.4	Comparison and indicators		
	5.2	Gener	ic network system		
		5.2.1	Network elements		
		5.2.2	Topologies		
		5.2.3	Redundancy handling		
		5.2.4	Network recovery time		
		5.2.5	Diagnosis coverage		
	- 0	5.2.6	Failures		
	5.3	•	/		
6	5.4 Security				
O		Classification of networks (informative)			
	6.1				
7	6.2				
7		-	calculations for selected networks (informative)		
	7.1				
	7.2		Occasio symmetrical reliability model		
		7.2.1 7.2.2	Generic symmetrical reliability model		
		7.2.2	Simplified symmetrical reliability model		
	7.3		bility of selected structures		
	1.5	7.3.1	Single LAN without redundant leaves		
		7.5.1	onigio Er ut midioat rodalidant louvoo		

		7.3.2	Network without redundant leaves	40
		7.3.3	Single LAN with redundant leaves	41
		7.3.4	Network with redundant leaves	41
		7.3.5	Considering second failures	
	7.4			44
8			gh Availability Networks: configuration rules, calculation and it method for deterministic recovery time in a ring topology	4.4
	8.1		al	
	8.2		ment and configuration rules for the ring topology	
	8.3		ations for fault recovery time in a ring	
	0.0	8.3.1	Dependencies and failure modes	
		8.3.2	Calculations for non-considered failure modes	
		8.3.3	Calculations for the considered failure modes	45
	8.4	Timing	measurement method	46
		8.4.1	Measurement of T _{PA}	46
		8.4.2	Measurement of T _L	47
		8.4.3	Measurement of (T _{TC} + T _F)	
		8.4.4	System test example	
Bib	liogra	ohy		52
_			rmance test overview	
Fig	ure 2	– Gener	al network elements (tree topology)	24
Fig	ure 3 -	– Link R	Redundancy Entity in a Doubly Attached Node (DAN)	26
Fig	ure 4	– Exam	ple of tree topology	27
Fig	ure 5	– Examı	ple of linear topology	28
Fig	ure 6	– Examı	ple of ring topology	28
Fig	ure 7	– Examı	ple of a partially meshed topology	29
Fig	ure 8 -	– Exam	ple of fully meshed topology	30
			LAN structure without redundant leaf links	
_		_	le LAN structure with redundant leaf links	
_		_	undant LAN structure without redundant leaf links	
_			undant LAN structure with redundant leaf links	
			eral symmetrical fault model	
			olified fault model	
_		-	nmetric fault model	
_		-		
_			ork with no redundancy	
_			rork with no single point of failure	
			rork with resiliency to second failure	
			rig for T _{PA} measurement	
			rig for T _L measurement	
			rig for (T _{TC} + T _F) measurement	
Fig	ure 22	? –Test r	rig for system test	50
Tab	ole 1 –	Examp	les of application grace time	21
Tak	ے 2 <u>م</u> ار	Evamn	les of redundancy protocols	23

This is a preview - click here to buy the full publication

-4-

62439-1	(C)	IFC:201	10(F)
UZ T UU-	(-)	LO.20	$\cup \cup \cup \cup$

Table 3 – Code assignment for the <type> field</type>	. 34
Table 4 – Code assignment for the <plcyleaf> field</plcyleaf>	
Table 5 – Code assignment for the <tplgy> field</tplgy>	. 35
Table 6 – Code assignment for the <itype> field</itype>	. 35

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 1: General concepts and calculation methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard 62439-1 has been prepared by subcommittee 65C: Industrial Networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This standard cancels and replaces IEC 62439 published in 2008. This first edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to IEC 62439 (2008):

- adding a calculation method for RSTP (rapid spanning tree protocol, IEEE 802.1Q).
- adding two new redundancy protocols: HSR (High-availability Seamless Redundancy) and DRP (Distributed Redundancy Protocol),
- moving former Clauses 1 to 4 (introduction, definitions, general aspects) and the Annexes (taxonomy, availability calculation) to IEC 62439-1, which serves now as a base for the other documents.
- moving Clause 5 (MRP) to IEC 62439-2 with minor editorial changes,

- moving Clause 6 (PRP) was to IEC 62439-3 with minor editorial changes,
- moving Clause 7 (CRP) was to IEC 62439-4 with minor editorial changes, and
- moving Clause 8 (BRP) was to IEC 62439-5 with minor editorial changes,
- adding a method to calculate the maximum recovery time of RSTP in a restricted configuration (ring) to IEC 62439-1 as Clause 8,
- adding specifications of the HSR (High-availability Seamless Redundancy) protocol, which shares the principles of PRP to IEC 62439-3 as Clause 5, and
- introducing the DRP protocol as IEC 62439-6.

The text of this standard is based on the following documents:

FDIS	Report on voting	
65C/583/FDIS	65C/589/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

A list of the IEC 62439 series can be found, under the general title *Industrial communication networks* – *High availability automation networks*, on the IEC website.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed.
- withdrawn,
- replaced by a revised edition, or
- · amended.

A bilingual version of this standard may be issued at a later date.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

62439-1 © IEC:2010(E)

-7-

INTRODUCTION

The IEC 62439 series specifies relevant principles for high availability networks that meet the requirements for industrial automation networks.

In the fault-free state of the network, the protocols of the IEC 62439 series provide ISO/IEC 8802-3 (IEEE 802.3) compatible, reliable data communication, and preserve determinism of real-time data communication. In cases of fault, removal, and insertion of a component, they provide deterministic recovery times.

These protocols retain fully the typical Ethernet communication capabilities as used in the office world, so that the software involved remains applicable.

The market is in need of several network solutions, each with different performance characteristics and functional capabilities, matching diverse application requirements. These solutions support different redundancy topologies and mechanisms which are introduced in IEC 62439-1 and specified in the other Parts of the IEC 62439 series. IEC 62439-1 also distinguishes between the different solutions, giving guidance to the user.

The IEC 62439 series follows the general structure and terms of IEC 61158 series.

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 1: General concepts and calculation methods

1 Scope

The IEC 62439 series is applicable to high-availability automation networks based on the ISO/IEC 8802-3 (IEEE 802.3) (Ethernet) technology.

This part of the IEC 62439 series specifies

- the common elements and definitions for other parts of the IEC 62439 series;
- the conformance test specification (normative);
- a classification scheme for network characteristics (informative);
- a methodology for estimating network availability (informative);
- the configuration rules, calculation and measurement method for a deterministic recovery time in RSTP.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-191:1990, International Electrotechnical Vocabulary – Chapter 191: Dependability and quality of service

IEC 61158 (all parts), Industrial communication networks - Fieldbus specifications

IEC 61158-6-10, Industrial communication networks — Fieldbus specifications — Part 6-10: Application layer protocol specification — Type 10 elements

ISO/IEC 8802-3:2000, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications

IEEE 802.1Q, IEEE standards for local and metropolitan area network. Virtual bridged local area networks

IEEE 802.1D:2004, IEEE standard for local Local and metropolitan area networks Media Access Control (MAC) Bridges

IETF RFC 791, Internet Protocol; available at http://www.ietf.org